МЕНЮ

Иван Парамонов, Владимир Смагин, Никита Косых, Анатолий Хомоненко – Методы и модели исследования сложных систем и обработки больших данных

Методы и модели исследования сложных систем и обработки больших данных
Пожалуйста оцените книгу: УжасноПлохоНормальноХорошоОтлично
Загрузка...
Автор: , , ,
Год выхода:
Издательство:
ISBN:
978-5-507-50398-8
Книга из раздела: Книги, Литерат., Прочая образовательная литература
 

О книге
«Иван Парамонов, Владимир Смагин, Никита Косых, Анатолий Хомоненко – Методы и модели исследования сложных систем и обработки больших данных»

Создание, накопление, обработка и использование информации в мире составляют мощную информационную среду. Она занимает ведущее значение в различных областях человеческой деятельности. Монография представляет начальный шаг выделения частных свойств указанного сложного процесса, их численного изучения с помощью предложенных методов и моделей инженерного характера. На наш взгляд, именно такие методы и модели составляют основу обработки больших данных в сфере решения научно-исследовательских задач.

Рассматриваются и усовершенствуются классические методы и модели исследования сложных систем, основные законы (Меткалфа, Амдала, Густавсона – Барсиса, Гроша) взаимодействия сетевых структур, модели и методы оценивания их эффективности и качества, а также модели и методы исследования сложных систем с нечеткими параметрами. Рассматриваются современные инструментальные средства и технологии интеллектуальной обработки больших данных.

Представлены оригинальные результаты, касающиеся решения задач: информационного взаимодействия, контроля состояния, оценивания надежности и предсказания событий для сложных систем; оценивания эффективности, качества и производительности сетевых структур, а также оценивания и обеспечения их надежности; расчета функций принадлежности с нечётким аргументом и коэффициентом, решения нечётких нелинейных уравнений, поиска условного экстремума при нечётком ограничении, решения дифференциальных уравнений с нечёткими коэффициентами.

Дан вариант обработки больших данных на основе совместного использования инструментальной системы Hadoop под управлением Windows и сверточной нейронной сети при решении задачи распознавания рукописных цифр. Обучение нейронной сети проводится на основе набора данных MNIST образцов написания рукописных цифр. Построение сверточной нейронной сети производится с помощью системы Neural Network Toolboox.

Рекомендуется преподавателям и научным сотрудникам, а также магистрантам и аспирантам и при исследовании сложных систем и технологий обработки больших данных.

Оставить комментарий

Your email address will not be published.


*


Яндекс.Метрика